

GCSE ICT Personalised Learning Checklist

Exam Board: Edexcel

Topic/Module:

Year Group: 11

Use this checklist before your assessment to focus your revision, and after to check the

effectiveness of your revision

G I am confident about this topic and I know what I need to do to revise it

A I am not too sure about this topic, I may need to check with my teacher and spend more

time revising this topic

R I am not confident I could answer a question on this topic. I need to check with my

teacher and ensure I have what I need to revise it.

Revision

Resources

Topic / Unit Focus R A G

 PROBLEM SOLVING

Understand what an algorithm is, what algorithms

are used for and be able to interpret algorithms

[flowcharts, pseudocode, structured English, written

descriptions, program code].

Be able to create an algorithm to solve a particular

problem, making use of programming constructs

[sequence, selection, repetition] and using an

appropriate notation [flowchart, written description,

program code].

Be able to describe the purpose of a given algorithm

and explain how a simple algorithm works.

Be able to identify the correct output of an

algorithm for a given set of data.

 Be able to identify and correct errors in algorithms.

Be able to code an algorithm into a high-level

language.

Understand how the choice of algorithm is

influenced by the data structure and data values

that need to be manipulated.

Understand how standard algorithms [quick sort,

bubble sort, selection sort, linear search, binary

My target grade is:

My predicted grade is:

search, breadth first search, depth first search,

maximum/minimum, mean, count] work.

Understand factors that affect the efficiency of an

algorithm.

Decomposition

Be able to analyse a problem, investigate

requirements [inputs, outputs, processing and

initialisation] and design solutions.

Be able to decompose a problem into smaller sub-

problems.

PROGRAMMING

Develop code

Be able to write programs in a high-level

programming language.

Understand the benefit of producing programs that

are easy to read, and be able to use techniques

[comments, descriptive variable names, indentation]

to improve readability and to explain how the code

works.

Be able to differentiate between types of error in

programs [logic, syntax, runtime].

 Be able to design and use test plans and test data.

Be able to interpret error messages and identify,

locate and fix errors in a program.

Be able to identify what value a variable will hold at

a given point in a program [trace table].

Be able to make effective use of tools offered in an

integrated development environment [watcher,

break points, single-step, and stepthroughs] 2.1.8 Be

able to evaluate the strengths and weaknesses of a

program and suggest improvements.

Be able to work safely, respectfully, responsibly and

securely when using computers.

Constructs

Be able to identify the structural components of a

program [variable and type declarations,

initialisations, command sequences, conditionals,

repetition, data structures, subprograms].

Be able to use sequencing, selection and repetition

constructs in their programs.

Data types and structures

Understand the need for and be able to select and

use data types [integer, real, Boolean, char].

Understand the need for and be able to select and

use data structures [one-dimensional arrays, two-

dimensional arrays].

Understand the need for and be able to manipulate

strings.

Understand the need for and be able to use

variables and constants.

Input/Output

Be able to write code that accepts and responds

appropriately to user input.

Understand the need for and be able to implement

validation.

Be able to write code that outputs information to a

screen and understand and use artesian x/y

coordinates.

Be able to design and code a user interface

[textual, graphical].

Be able to write code that opens/closes,

reads/writes, deletes, inserts, appends from/to a file.

Operators

Understand the purpose of and be able to use

arithmetic operators [plus, minus, divide, multiply,

modulus, integer division].

Understand the purpose of and be able to use

relational operators [equal to, less than, greater

than, not equal to, less than or equal to, greater

than or equal to].

Understand the purpose of and be able to use

Boolean operators [AND, OR, NOT].

Subprograms

Understand the benefits of using subprograms and

be able to write code that uses user-written and pre-

existing [built-in, library] subprograms.

Understand the concept of passing data into and

out of subprograms [procedures, functions, return

values].

Be able to create subprograms that perform

generalisation.

DATA

Binary

Understand that computers use binary to represent

data and instructions.

Understand how computers represent and

manipulate numbers [unsigned integers, signed

integers (sign and magnitude, Two’s complement)

real numbers].

Be able to convert between binary and denary

whole numbers (0- 255) and vice versa.

Be able to perform binary arithmetic [add, subtract,

multiply] and understand the concept of overflow.

Understand why hexadecimal notation is used and

be able to convert between hexadecimal and

binary and vice versa.

Data representation

Understand how computers encode characters

[ASCII, Unicode].

Understand how bitmap images are represented in

binary [pixels, resolution, and colour depth].

Understand how analogue data [sound,

temperature, light intensity] is represented in binary.

Understand the limitations of binary representation of

data [quantisation, sampling frequency] and how

bit length constrains the range of values that can be

represented .

Data storage and compression

Understand and be able to convert between the

terms ‘bit, nibble, byte, kilobyte (KB), megabyte

(MB), gigabyte (GB), terabyte (TB)’.

Understand the need for data compression and

methods of compressing data [lossless, lossy] and

that JPEG and MP3 are examples of lossy algorithms.

Understand how a lossless, run-length encoding [RLE]

algorithm works.

Understand that file storage is measured in bytes

and that data transmission is measured in bits per

seconds, and be able to calculate the time required

to transmit a file and storage requirements for files.

Encryption

 Understand the need for data encryption.

 Understand how a Caesar cipher algorithm works.

Databases

Understand the characteristics of structured and

unstructured data.

Understand that data can be decomposed and

organised in a structured database [tables, records,

fields, relationships, keys] .

Understand the need for and be able to use SQL

statements *

COMPUTERS

Machines and computational models

Understand the concept of a computer as a

hardware machine or as a virtual machine.

Understand that there is a range of computational

models [sequential, parallel, multi-agent].

 Understand the input-process-output model.

Hardware

Understand the function of hardware components

of a computer system [processor (CPU), memory,

secondary storage, input devices, output devices]

and how they work together.

Understand the concept of a stored program and

the role of components of the processor [control unit

(CU), arithmetic/logic unit (ALU), registers, clock,

address bus, data bus] in the fetch-decode execute

cycle.

Understand the function of assembly code and be

able to interpret a block of assembly code using a

given set of commands*

Understand how data is stored on physical devices

[magnetic, optical, solid state].

Understand how microcontrollers can be

programmed to control actuators and take input

from sensors.

Logic

Be able to construct truth tables for a given logic

statement [AND, OR, NOT].

Be able to produce logic statements for a given

problem.

Software

Understand what an operating system is and the

functions of an operating system [file management,

input/output, resource allocation, process

management, network management, user

management].

Understand that application software such as a web

browser, word processor, spreadsheet or apps are

computer programs.

Understand how software can be used to simulate

and model aspects of the real world and be able to

create software models.

Programming Languages

Understand what is meant by high-level and low-

level programming languages and assess their

suitability for a particular task.

Understand what is meant by a compiler and an

interpreter.

COMMUNICATION AND THE INTERNET

Networks

Understand why computers are connected in a

network.

Understand the different types of networks [LAN,

WAN, PAN, and VPN].

Understand the network media [copper cable, fibre

optic cable, wireless].

Understand that network data speeds are measured

in bits per second [Mbps, Gbps].

Understand the role of and need for network

protocols.

Understand that data can be transmitted over

networks using packets [TCP/IP].

Understand the need to detect and correct errors in

data transmission [check sums].

Understand the concept of and need for network

addressing and host names [MAC addresses].

Understand characteristics of network topologies

[bus, ring, star, mesh].

The Internet and the World Wide Web

Understand what is meant by the internet and how

the internet is structured [IP addressing, routers,

connecting backbone, domain names].

Understand what is meant by the world wide web

(WWW) and components of the WWW [web server

URLs, ISP, HTTP, HTTPS, HTML].

Be able to use HTML and CSS to construct web

pages [formatting, links, images, media, layout,

styles, and lists].

Understand the client-server model, the difference

between client-side and server-side processing and

the role of cookies .

THE BIGGER PICTURE

Emerging trends, issues and impact

Be aware of current and emerging trends in

computing technology [quantum computing, DNA

computing, artificial intelligence (AI), nano

technology].

Be aware of the impact of computing on individuals,

society and the environment.

Be aware of ethical and legal issues arising from the

use of computers.

Be aware of ownership issues relating to computing

[intellectual property, patents, licensing, open

source and proprietary software].

Additional Support/ Guidance:

