Revision Sheets AQA GSCE Triple Physics Paper 1 Higher Name: Class: Energy Stores and Systems | Key Term | Definition | |----------|------------| | System | | | Energy Store | Description | |----------------------------|-------------| | Magnetic | | | Internal | | | Chemical | | | Kinetic | | | Electrostatic | | | Elastic Potential | | | Gravitational
Potential | | | Nuclear | | #### Kinetic Energy 1 | Key Term | Definition | |----------------|------------| | Kinetic Energy | | | Quantity | Symbol | Unit | |-------------------|--------|------| | Kinetic
Energy | | | | Mass | | | | Speed | | | Identify the equation that links kinetic energy, mass and speed. | Calculate
kinetic
energy
when | Mass is 67kg
and speed is
5m/s | Mass is 1.2kg
and speed is
25m/s | Mass is 57g
and speed is
2.5m/s | Mass is 850g
and speed is
5m/s | |--|--------------------------------------|--|---------------------------------------|--------------------------------------| | Convert
Units | | | | | | Write down the formula to be used. | | | | | | Substitute
Values | | | | | | Do the
Maths | | | | | | Round and add units. | | | | | ### Kinetic Energy 2 | Calculate
mass
when | Speed is 5m/s
and K.E is 82J | Speed is 5m/s
and K.E is
2.5KJ | Speed is 8m/s
and K.E is
7.1KJ | Speed is
12.5m/s and
K.E is 17KJ | |------------------------------------|---------------------------------|--------------------------------------|--------------------------------------|--| | Convert
Units | | | | | | Write down the formula to be used. | | | | | | Substitute
Values | | | | | | Rearrange | | | | | | Answer | | | | | | Round and add units. | | | | | | Calculate
speed
when | K.E is 82J and
mass is 1.2kg | K.E is 2.5KJ
and mass is
3kg | K.E is 8.1kJ
and mass is
18kg | K.E is 90J and
mass is 541g | |------------------------------------|---------------------------------|------------------------------------|-------------------------------------|--------------------------------| | Convert
Units | | | | | | Write down the formula to be used. | | | | | | Substitute
Values | | | | | | Rearrange | | | | | | Answer | | | | | | Round and add units. | | | | | #### Elastic Potential Energy 1 | Key Term | Definition | |-------------------|------------| | Elastic Potential | | | Quantity | Symbol | Unit | |--------------------------------|--------|------| | Elastic
Potential
Energy | | | | Spring
Constant | | | | Extension | | | Identify the equation that links elastic potential, extension and spring constant. | Calculate
elastic
potential
energy
when | Spring constant is 2N/m and extension is 3.2m | Spring
constant is
7.8N/m and
extension is
4.2m | Spring
constant is
2N/m and
extension is
38cm | Spring
constant is
122N/m and
extension is
98mm | |---|---|---|---|---| | Convert
Units | | | | | | Write down the formula to be used. | | | | | | Substitute
Values | | | | | | Do the
Maths | | | | | | Round and add units. | | | | | # Elastic Potential Energy 2 | Calculate
spring
constant
when | E.P.E is 100J
and extension
is 1.2m | E.P.E is 100J
and extension
is 32cm | E.P.E is 1.8kJ
and extension
is 2.8m | E.P.E is 1.9KJ
and extension
is 92cm | |---|---|---|--|--| | Convert
Units | | | | | | Write
down the
formula. | | | | | | Substitute
Values | | | | | | Rearrange | | | | | | Answer | | | | | | Round and add units. | | | | | | Calculate extension when | E.P.E is 100J
and spring
constant is
2N/m | E.P.E is 1.02kJ
and spring
constant is
8N/m | E.P.E is 2.8kJ
and spring
constant is
3.1N/m | E.P.E is 0.72kJ
and spring
constant is
2N/m | |-------------------------------|--|--|---|--| | Convert
Units | | | | | | Write
down the
formula. | | | | | | Substitute
Values | | | | | | Rearrange | | | | | | Answer | | | | | | Round and add units. | | | | | # Gravitational Potential Energy 1 | Key Term | Definition | |-------------------------|------------| | Gravitational Potential | | | Quantity | Symbol | Unit | |--------------------------------------|--------|------| | Gravitational
Potential
Energy | | | | Mass | | | | Gravitational
Field
Strength | | | | Height | | | Identify the equation that links gravitational potential energy, gravitational field strength and height. | Calculate
g.p.e
when | Mass is 67kg,
gravitational
field strength is
9.8 and height
is 2.8m. | Mass is 15kg,
gravitational
field strength is
9.8 and height
is 56cm. | Mass is 525g,
gravitational
field strength is
9.8 and height
is 71m. | Mass is 871g,
gravitational
field strength is
9.8 and height
is 121cm. | |------------------------------------|---|---|--|--| | Convert
Units | | | | | | Write down the formula to be used. | | | | | | Substitute
Values | | | | | | Do the
Maths | | | | | | Round and add units. | | | | | # Gravitational Potential Energy 2 For each of the questions below gravitational field strength is 9.81N/kg | Calculate
mass
when | G.P.E is 100J
and height is
1.2m | G.P.E is 100J
and height is
32cm | G.P.E is 1.8kJ
and height is
14cm | G.P.E is 0.19KJ
and extension
is 12cm | |-------------------------------|--|--|---|---| | Convert
Units | | | | | | Write
down the
formula. | | | | | | Substitute
Values | | | | | | Rearrange | | | | | | Answer | | | | | | Round and add units. | | | | | | Calculate
height
when | GPE is 800J
and mass is
67kg | GPE is 2.1kJ
and mass is
93kg | GPE is 123J
and mass is
12g | GPE is 0.91kJ
and mass is
850g | |-------------------------------|------------------------------------|-------------------------------------|-----------------------------------|--------------------------------------| | Convert
Units | | | | | | Write
down the
formula. | | | | | | Substitute
Values | | | | | | Rearrange | | | | | | Answer | | | | | | Round and add units. | | | | | Energy Changes in Systems 1 | Key Term | Definition | |------------------------|------------| | Specific Heat Capacity | | | Quantity | Symbol | Unit | |--------------------------------|--------|------| | Change in
Thermal
Energy | | | | Mass | | | | Specific Heat
Capacity | | | | Temperature
Change | | | Identify the equation that links change in thermal energy, mass, specific heat capacity and temperature change. | Calculate change in thermal energy when | Mass is 67kg,
SHC is 2J/kg°C
and Δθ is 3.1°C | Mass is 15kg,
SHC is
7.1J/kg°C and
Δθ is 2.9°C | Mass is 525g,
SHC is 2J/kg°C
and Δθ is 17°C | Mass is 871g,
SHC is 2J/kg°C
and the
temperature
raises by 11°C | |---|--|---|---|---| | Convert
Units | | | | | | Write
down the
formula. | | | | | | Substitute
Values | | | | | | Do the
Maths | | | | | | Round and add units. | | | | | # Energy Changes in Systems 2 For each of the questions below the substance is water with a specific heat capacity of 4182J/kg°C. | Calculate
mass
when | ΔE is 100J and $\Delta \theta$ is 12°C | Δ E is 1.2kJ and $\Delta\theta$ is 9°C | ΔE is 0.91kJ and $\Delta \theta$ is 12°C | Δ E is 1.50kJ
and $\Delta\theta$ is
17.8°C | |-------------------------------|--|---|--|---| | Convert
Units | | | | | | Write
down the
formula. | | | | | | Substitute
Values | | | | | | Rearrange | | | | | | Answer | | | | | | Round and add units. | | | | | | Calculate
temp
change
when | ∆E is 100J
and mass is
67kg. | ΔE is 120J
and mass is
31kg. | ΔE is 1.2kJ
and mass is
2kg. | ∆E is 1.8kJ
and mass is
51g. | |-------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------| | Convert
Units | | | | | | Write
down the
formula. | | | | | | Substitute
Values | | | | | | Rearrange | | | | | | Answer | | | | | | Round and add units. | | | | | Specific Heat Capacity RP | | Construct a method to determine the specific heat capacity of a material. Use the space below to draw a diagram of how equipment would be set up. | \ | |---|---|---| _ | | | Power 1 | Key Term | Definition | |----------|------------| | Power | | | Quantity | Symbol | Unit | |-----------------------|--------|------| | Power | | | | Energy
Transferred | | | | Time | | | | Work Done | | | Identify the equation that links energy transferred, power and time. Identify the equation that links power, time and work done. | Calculate
the power
when | 120J of energy
is transferred in
30s | 1kJ of work is
done in 300s | 351J of energy
is transferred in
1 minute | 2.5kJ of work is
done in 10
minutes | |--------------------------------|--|--------------------------------|---|---| | Convert
Units | | | | | | Write
down the
formula. | | | | | | Substitute
Values | | | | | | Do the
Maths | | | | | | Round and add units. | | | | | #### Power 2 | Calculate
work
done
when | Power is 100W and time is 30s | Power is 250W and time is 1min | Power is 1.2kW
and the time is
45s | Power is 1.4kW
and the time is
3mins | |--|--|--|---|--| | Convert
Units | | | | | | Write
down the
formula. | | | | | | Substitute
Values | | | | | | Rearrange | | | | | | Answer | | | | | | Round and add units. | | | | | | | | | | | | Calculate
time
when | Power is 55W
and work done
is 30J. | Power is 120W
and energy
transferred is
2.1kJ | Power is 85W
and energy
transferred is
1.2kJ | Power is 1.2kW
and energy
transferred is 1kJ | | time | and work done | and energy
transferred is | and energy
transferred is | and energy | | time
when | and work done | and energy
transferred is | and energy
transferred is | and energy | | time when Convert Units Write down the | and work done | and energy
transferred is | and energy
transferred is | and energy | | time when Convert Units Write down the formula. Substitute | and work done | and energy
transferred is | and energy
transferred is | and energy | | time when Convert Units Write down the formula. Substitute Values | and work done | and energy
transferred is | and energy
transferred is | and energy | # Energy Transfers in A System | Key Term | Definition | |---|--| | Wasted Energy | | | Describe the law for the conserv | ration of energy. | | | | | Method Of Reducing Unwanted Energy Transfers | Description | | Lubrication | | | Thermal Insulation | | | Describe the relationship betw rate of conduction. | een thermal conductivity and the | | Describe how the rate of cooling thickness and thermal conductive | ng of a building is affected by the vity of its walls. | | Construct a method to investigate the effectiveness of different materials as thermal insulators. Use the space below to draw a diagram of how equipment would be set up. | |---| | | | | | | | | | | | | | | | | Construct a method to investigate the different factors to may affect the thermal insulation properties of a mater Use the space below to draw a diagram of how equipm would be set up. | | | |---------------|---|-----|--| _ | | | | | _ | | | | | _ | | | | | _ | | | \setminus — | | _ , | | #### Efficiency | Key Term | Definition | |------------|------------| | Efficiency | | | | | | Describe how to calculate efficiency. | | | | |---------------------------------------|--|--|--| | | | | | | | | | | | Calculate
the
efficiency
when | A TV transfers
58W of the
75W supplied. | 1kJ of energy is
supplied and
200J of energy
is transferred
usefully. | 1.2kJ of energy
is supplied and
250J of energy
is transferred
usefully. | A hairdryer
transfers 71W
of the 211W
supplied. | |--|---|---|---|--| | Convert
Units | | | | | | Write
down the
formula. | | | | | | Substitute
Values | | | | | | Do the
Maths | | | | | | Round and add units. | | | | | #### Energy Resources | Key Term | Definition | |---------------------------|--------------------------------| | Renewable | | | Non-Renewable | | | Fossil Fuel | | | Nuclear Fuel | | | Biofuel | | | Hydroelectricity | | | Geothermal | | | Renewable Energy Resource | Non-Renewable Energy Resources | | | | Describe uses that we have for energy resource. Non-Renewable Energy Resources | Key Term | Definition | |---------------|------------| | Non-Renewable | | | Fossil Fuel | | | Nuclear Fuel | | | Energy Resource | Advantages | Disadvantages | |-----------------|------------|---------------| | Fossil Fuels | | | | Nuclear Fuel | | | Renewable Energy Resources | Key Term | Definition | |-----------|------------| | Renewable | | | Enormy | | | |--------------------|------------|---------------| | Energy
Resource | Advantages | Disadvantages | | Biofuel | | | | Wind | | | | Hydroelectricity | | | | Geothermal | | | | Tidal | | | | Solar | | | | Water Waves | | | Standard Circuit Diagram Symbols | Component | Symbol | Component | Symbol | |-------------------|--------|------------|--------| | Open Switch | | LED | | | Closed Switch | | Lamp | | | Cell | | Fuse | | | Battery | | Voltmeter | | | Diode | | Ammeter | | | Resistor | | Thermistor | | | Variable Resistor | | LDR | | # Electrical Charge 1 | Key Term | Definition | |------------------|------------| | Electric Current | | | Quantity | Symbol | Unit | |-------------|--------|------| | Charge Flow | | | | Current | | | | Time | | | Identify the equation that links charge flow, current and time. | Calculate
charge
flow
when | There is a 3A current for 30s | There is a 1.5A
current for
2mins | There is a
500mA current
for 30s | There is a 5A
current for 1
minute | |-------------------------------------|-------------------------------|---|--|--| | Convert
Units | | | | | | Write
down the
formula. | | | | | | Substitute
Values | | | | | | Do the
Maths | | | | | | Round and add units. | | | | | # Electrical Charge 2 | Calculate
current
when | Charge flow is
125C for 12s | Charge flow is
0.2C for 3mins | Charge flow is
0.5C for 25s | Charge flow is
0.2C for 10mins | |-------------------------------|--------------------------------|----------------------------------|--------------------------------|-----------------------------------| | Convert
Units | | | | | | Write
down the
formula. | | | | | | Substitute
Values | | | | | | Rearrange | | | | | | Answer | | | | | | Round and add units. | | | | | | Calculate
time
when | Charge flow is
125C and
current is 2A | Charge flow is
80C and current
is 4A | Charge flow is
900C and
current is
900mA | Charge flow is
450C and
current is
500mA | |-------------------------------|---|--|---|---| | Convert
Units | | | | | | Write
down the
formula. | | | | | | Substitute
Values | | | | | | Rearrange | | | | | | Answer | | | | | | Round and add units. | | | | | Current, Resistance and Potential Difference 1 | Key Term | Definition | |------------------|------------| | Electric Current | | | Quantity | Symbol | Unit | |----------------|--------|------| | Potential Diff | | | | Current | | | | Resistance | | | Identify the equation that links current, potential difference and resistance. | Calculate
potential
difference
when | Current is 3A
and the
resistance is 2Ω | Current is 1.5A and resistance is 10Ω | Current is 10A
and the
resistance is 2Ω | Current is
500mA and the
resistance is
12Ω | |--|--|--|---|---| | Convert
Units | | | | | | Write
down the
formula. | | | | | | Substitute
Values | | | | | | Do the
Maths | | | | | | Round and add units. | | | | | Current, Resistance and Potential Difference 1 | Calculate
current
when | Potential difference is 7V and resistance is 2Ω | Potential difference is 17V and resistance is 12Ω | Potential difference is 3.5V and resistance is 17Ω | Potential difference is 2V and resistance is 2Ω | |-------------------------------|---|---|---|---| | Convert
Units | | | | | | Write
down the
formula. | | | | | | Substitute
Values | | | | | | Rearrange | | | | | | Answer | | | | | | Round and add units. | | | | | | Calculate
resistance
when | Potential
difference is 7V
and current is 2A | Potential
difference is 17V
and current is
3.5A | Potential
difference is 12V
and current is
750mA | Potential
difference is 7V
and current is
200mA | |---------------------------------|--|--|---|--| | Convert
Units | | | | | | Write
down the
formula. | | | | | | Substitute
Values | | | | | | Rearrange | | | | | | Answer | | | | | | Round and add units. | | | | | Resistance of a Wire RP | Construct a method to investigate the relationship between
the length of a wire and its resistance. Use the space below
to draw a diagram of how equipment would be set up. | | |---|---| | | | | | | | | | | | | | | | | | _ | | | _ | | | _ | | | | | | _ | | | | Resistors | Describe the relationship between current and potential difference through an ohmic conductor. Construct an I-V graph to model this. | |--| | | | | Construct an I-V graph for a filament lamp. Construct an I-V graph for a diode. | Component | Description of when Resistance Changes | Use | |------------|--|-----| | Thermistor | | | | LDR | | | I-V Characteristics 1 RP | Construct a method to investigate the IV Characteristics of a resistor. Use the space below to draw a diagram of how equipment would be set up. | |---| | | | | | | | | | | | | | | | | | | I-V Characteristics 2 RP | Construct a method to investigate the IV Characteristics of a filament lamp. Use the space below to draw a diagram of how equipment would be set up. | | |--|--| I-V Characteristics 3 RP | Construct a method to investigate the IV Characteristics of a diode. Use the space below to draw a diagram of how equipment would be set up. | |--| | | | | | | | | | | | | | | | | | | # Series and Parallel Circuits | Circuit | Series | Parallel | |-------------------------------------|--------|----------| | Description | | | | Diagram | | | | Current Through The Component | | | | Potential Difference and Components | | | | Resistance and
Components | | | # Direct and Alternating Current | Key Term | Definition | Example of Source | |---------------------|------------|-------------------| | Direct Current | | | | Alternating Current | | | | xplain th
ifference. | e differenc | e between | direct | and | alternating | potent | |-------------------------|-------------|-----------|--------|-----|-------------|--------| Mains Electricity | Live Wire Neutral Wire Earth Wire Explain why a live wire may be dangerous even when a switch is open | Neutral Wire | | | |--|--------------|--|--| | Earth Wire | | | | | | Earth Wire | | | | Explain why a live wire may be dangerous even when a switch is ope | | | | | | | | | | | | | | Power 3 | Key Term | Definition | |----------|------------| | Power | | | Quantity | Symbol | Unit | |----------------|--------|------| | Potential Diff | | | | Current | | | | Resistance | | | | Power | | | Identify the equation that links current, potential difference and power Identify the equation that links current, power and resistance. | Calculate
power
when | Current is 3A
and the P.D is
2V | Current is 1.5A
and resistance
is 10Ω | Current is
100mA and the
P.D is 12V | Current is
500mA and the
resistance is
12Ω | |-------------------------------|---------------------------------------|---|---|---| | Convert
Units | | | | | | Write
down the
formula. | | | | | | Substitute
Values | | | | | | Do the
Maths | | | | | | Round and add units. | | | | | Power 4 | Calculate
P.D
when | Power is 25W and current is 5A | Power is 0.25kW
and current is
40A | Power is 2W and current is 750mA | Power is 0.75kW
and current is
10A | |-------------------------------|--------------------------------|--|----------------------------------|--| | Convert
Units | | | | | | Write
down the
formula. | | | | | | Substitute
Values | | | | | | Rearrange | | | | | | Answer | | | | | | Round and add units. | | | | | | Calculate
current
when | Potential
difference is 7V
and power is
75W | Power is 100W
and resistance is
5Ω | Power is 2.8KW
and resistance is
10Ω | Power is 3.2KW and resistance is 25Ω | |-------------------------------|--|--|--|--------------------------------------| | Convert
Units | | | | | | Write
down the
formula. | | | | | | Substitute
Values | | | | | | Rearrange | | | | | | Answer | | | | | | Round and add units. | | | | | # Energy Transfers in Appliances 1 | Key Term | Definition | |----------------------|------------| | Electrical Appliance | | | Quantity | Symbol | Unit | |-----------------------|--------|------| | Potential Diff | | | | Energy
Transferred | | | | Time | | | | Power | | | | Charge Flow | | | Identify the equation that links energy transferred, power and time. Identify the equation that links charge flow, energy transferred and potential difference | Calculate
energy
transferr-
ed when | Power is 60W and times is 3s. | Charge flow is
12C and
potential
difference is 3V | Power is 12W
and the time is
1 minute. | Charge flow is
25C and
potential
difference is
1.5V | |--|-------------------------------|--|--|---| | Convert
Units | | | | | | Write
down the
formula. | | | | | | Substitute
Values | | | | | | Do the
Maths | | | | | | Round and add units. | | | | | ## Energy Transfers in Appliances 2 | Calculate
power
when | 120J of energy is
transferred in
30s | 225J of energy is
transferred in 2
mins | 1.8kJ of energy
is transferred in
45s | 2.5kJ of energy
is transferred in
10min | |-------------------------------|--|---|---|---| | Convert
Units | | | | | | Write
down the
formula. | | | | | | Substitute
Values | | | | | | Rearrange | | | | | | Answer | | | | | | Round and add units. | | | | | | Calculate
P.D
when | Charge flow is
30C and 120J of
energy is
transferred. | Charge flow is
44C and 1.95kJ
of energy is
transferred. | Charge flow is
12C and 44J of
energy is
transferred. | Charge flow is
120C and 2.5kJ
of energy is
transferred. | |-------------------------------|--|--|---|--| | Convert
Units | | | | | | Write
down the
formula. | | | | | | Substitute
Values | | | | | | Rearrange | | | | | | Answer | | | | | | Round and add units. | | | | | **National Grid** | Key Term | Definition | |-----------------------|------------| | National Grid | | | Step-Up Transformer | | | Step-Down Transformer | | |
 |
 |
 | |------|------|------| #### Static Charge | Key Term | Definition | |--|-------------------------------------| | Non-Contact Force | | | Repel | | | Attract | | | Describe how insulating materia | ls become electrically charged. | | Describe what happens when to brought close together. | wo electrically charged objects are | | | | | | | | Describe evidence that charge another when not in contact. | d objects exert forces on when | | | | #### **Electric Field** | Key Term | Definition | |------------------------|------------| | Electric Field | | | Van de Graaf Generator | | Describe what happens to the strength of an electric field when you move away from the object. Describe what happens when you place a charged object inside of an electric field. Draw a diagram to show the electric field pattern for an isolated charged sphere. Explain why someone may receive an electric shock when they touch a metal tap. # Density of Materials 1 | Key Term | Definition | |----------|------------| | Density | | | Quantity | Symbol | Unit | |----------|--------|------| | Density | | | | Mass | | | | Volume | | | Identify the equation that links density, mass and volume. | Calculate
density
when | Mass is 2kg and volume is 3m ³ | Mass is 150g
and volume is
0.1m ³ | Mass is 1kg and volume is 0.2m ³ | Mass is 1500g
and volume is
0.12m ³ | |-------------------------------|---|--|---|--| | Convert
Units | | | | | | Write
down the
formula. | | | | | | Substitute
Values | | | | | | Do the
Maths | | | | | | Round and add units. | | | | | # Density of Materials 2 | Calculate
mass
when | There is 0.1m ³ of
a material with a
density of
1.5kg/m ³ | There is 0.2m ³ of
a material with a
density of
4kg/m ³ | There is 0.005m ³ of a material with a density of 3.7kg/m ³ | There is 0.001m ³ of a material with a density of 17kg/m ³ | |-------------------------------|--|--|---|--| | Convert
Units | | | | | | Write
down the
formula. | | | | | | Substitute
Values | | | | | | Rearrange | | | | | | Answer | | | | | | Round and add units. | | | | | | | | | | | | Calculate
volume
when | There is 37kg of
a material with a
density of
1.5kg/m ³ | There is 250g of
a material with a
density of
17kg/m ³ | There is 5g of a
material with a
density of
2.8kg/m ³ | There is 1800g
of a material
with a density of
0.8kg/m ³ | | Convert
Units | | | | | | | I | | | 1 | | Wilciiii | 1.5kg/m ³ | 17kg/m³ | 2.8kg/m³ | 0.8kg/m ³ | |-------------------------------|----------------------|---------|----------|----------------------| | Convert
Units | | | | | | Write
down the
formula. | | | | | | Substitute
Values | | | | | | Rearrange | | | | | | Answer | | | | | | Round and add units. | | | | | Determining Density 1 RP | Construct a method to determine the density of a regular shaped object. Use the space below to draw a diagram of how equipment would be set up. | | | |---|---|--| | | | | | | | | | | | | | | | | | | _ | | | | _ | | | | _ | | | | _ | | Determining Density 2 RP | | Construct a method to determine the density of an irregular shaped object. Use the space below to draw a diagram of how equipment would be set up. | | | | | |-----|--|-----|--|--|--| _ | | | | | | | _ | | | | | | | _ | | | | | | | _ | | | | | \ — | | _ , | | | | Changes of State | Key Term | Definition | |-----------------------------------|-------------| | Melt | | | Freeze | | | Boil | | | Evaporate | | | Condense | | | Sublimate | | | Construct a diagram to model stat | te changes. | | Describe what happens to mass when an object changes state. | | | |---|--|--| | | | | | | | | | | | | | Compare state changes and chemical changes. | | | Internal Energy | Key Term | Definition | |----------------------------------|-------------------------| | Internal Energy | | | Describe what makes up the inter | nal energy of a system. | | | | | Explain what happens when a syst | tem is heated. | | | | | | | Energy Changes in Systems 3 | Key Term | Definition | |------------------------|------------| | Specific Heat Capacity | | | Quantity | Symbol | Unit | |--------------------------------|--------|------| | Change in
Thermal
Energy | | | | Mass | | | | Specific Heat
Capacity | | | | Temperature
Change | | | Identify the equation that links change in thermal energy, mass, specific heat capacity and temperature change. | Calculate change in thermal energy when | Mass is 17kg,
SHC is 3J/kg°C
and Δθ is 2.1°C | Mass is 15kg,
SHC is
7.1J/kg°C and
Δθ is 3.8°C | Mass is 425g,
SHC is 3J/kg°C
and Δθ is 21°C | Mass is 831g,
SHC is 3J/kg°C
and the
temperature
raises by 0.1°C | |---|--|---|---|--| | Convert
Units | | | | | | Write
down the
formula. | | | | | | Substitute
Values | | | | | | Do the
Maths | | | | | | Round and add units. | | | | | ## Energy Changes in Systems 4 For each of the questions below the substance is aluminium with a specific heat capacity of 900J/kg°C. | Calculate
mass
when | ΔE is 100J and $\Delta \theta$ is 15°C | Δ E is 1.4kJ and $\Delta\theta$ is 9°C | ΔE is 0.72kJ
and $\Delta \theta$ is
12°C | Δ E is 1.50kJ
and $\Delta\theta$ is
17.8°C | |---|--|---|--|---| | Convert
Units | | | | | | Write
down the
formula. | | | | | | Substitute
Values | | | | | | Rearrange | | | | | | Answer | | | | | | Round and add units. | | | | | | Colordota | | | | | | Calculate
temp
change
when | ∆E is 100J
and mass is
7kg. | ∆E is 1120J
and mass is
3.1kg. | Δ E is 2.8kJ and mass is 2.1kg. | ∆E is 1.8kJ
and mass is
51g. | | temp
change | and mass is | and mass is | and mass is | and mass is | | temp
change
when | and mass is | and mass is | and mass is | and mass is | | temp change when Convert Units Write down the | and mass is | and mass is | and mass is | and mass is | | temp change when Convert Units Write down the formula. Substitute | and mass is | and mass is | and mass is | and mass is | | temp change when Convert Units Write down the formula. Substitute Values | and mass is | and mass is | and mass is | and mass is | ## Change in State and SLH 1 | Key Term | Definition | |--------------------------------------|------------| | Latent Heat | | | Specific Latent Heat | | | Specific Latent Heat of Fusion | | | Specific Latent Heat of Vaporisation | | | Quantity | Symbol | Unit | |-------------------------|--------|------| | Energy | | | | Mass | | | | Specific
Latent Heat | | | Identify the equation that links energy for a change in state, mass and specific latent heat. | Calculate the energy to change state when | There is 0.5kg of
a material with a
specific latent
heat of 2J/kg | There is 2.8kg of
a material with a
specific latent
heat of 5J/kg | There is 500g of
a material with a
specific latent
heat of 1021J/kg | There is 52g of a
material with a
specific latent
heat of 980J/kg | |---|--|--|--|--| | Convert
Units | | | | | | Write
down the
formula. | | | | | | Substitute
Values | | | | | | Do the
Maths | | | | | | Round and add units. | | | | | ## Change in State and SLH 2 For each of the questions below the substance is aluminium with a specific heat capacity of 900J/kg°C. | Calculate
mass
when | Energy is
100J and SLH
is 900J/kg | Energy is 1kJ
and SLH is
1081J/kg | Energy is
100J and SLH
is 820J/kg | Energy is
7.8kJ and SLH
is 501J/kg | |-------------------------------|---|---|---|--| | Convert
Units | | | | | | Write
down the
formula. | | | | | | Substitute
Values | | | | | | Rearrange | | | | | | Answer | | | | | | Round and add units. | | | | | | Calculate
SLH
when | The energy
suppled is
1200J and the
mass is 2kg. | The energy suppled is 5.5kJ and the mass is 2.2kg. | The energy suppled is 700J and the mass is 55g. | The energy suppled is 3kJ and the mass is 250g. | |-------------------------------|---|--|---|---| | Convert
Units | | | | | | Write
down the
formula. | | | | | | Substitute
Values | | | | | | Rearrange | | | | | | Answer | | | | | | Round and add units. | | | | | Particle Motion in Gases | temperature and pressure. | |---| | | | | | | | | | | | | | | | Describe the relationship between the temperature of a gas and its pressure at a constant volume. | | | | | | | | | | | Pressure in Gases | Explain how increasing the volume in which a gas is contained, at a constant temperature, can lead to a decrease in pressure. | |---| | | | Quantity | Symbol | Unit | |----------|--------|------| | Pressure | | | | Volume | | | Identify the equation for a fixed mass of gas held at a constant temperature. | Calculate the pressure when | The pressure is
100,000Pa in 0.03m ³
and volume is
decreased to 0.025m ³ | The pressure is 2kPa
in 0.003m³ and
volume is increased
to 0.025m³ | The pressure is
18.8kPa in 2m³ and
pressure is decreased
to 0.5m³ | |--|---|---|--| | Convert Units | | | | | Write down the formula. | | | | | Substitute Values to Determine Constant | | | | | Substitute
Values to Find
New Pressure | | | | | Rearrange | | | | | Answer | | | | | Round and add units. | | | | Increasing the Pressure of a Gas | Des | Work | | |-----|-------------------------------------|--| | Des | | | | | scribe what happens wher | n work is done on a gas. | | _ | lain why when temperate | ure is increased the pressure within a | | | | | | | lain why the pressure insompressed. | side a container increases when a ga | # Structure of an Atom | Radius of an Atom | | |---|-------------------------------| | Radius of an Atoms Nucleus | | | Describe the basic structure of ar | atom and construct a diagram. | Describe how the electron ar radiation is absorbed. | rangements may change when | | | rangements may change when | | | rangements may change when | Mass Number, Atomic Number and Isotopes | Key Term | Definition | |---------------|------------| | Mass Number | | | Atomic Number | | | Isotope | | | Particle | Relative
Charge | Relative
Mass | |----------|--------------------|------------------| | Proton | | | | Neutron | | | | Electron | | | Identify what determines the element an atom is. Explain why atoms are neutral. Explain how to calculate the numbers of protons neutrons and electrons when given the atomic number and mass number. Development of the Model of the Atom | • | m pudding | | | | | | |---------|--------------|-----------|----------|------|--------|--------| | | | | | | | | |
 | how the | scattering | g experin | nent led | to a | change | in the | | | e scattering | g experin | nent led | to a | change | in the | | | e scattering | g experin | nent led | to a | change | in the | | | e scattering | g experin | nent led | to a | change | in the | | | e scattering | g experin | nent led | to a | change | in the | | | e scattering | g experin | nent led | to a | change | in the | Radioactive Decay and Nuclear Radiation | Key Term | Definition | |-------------------|------------| | Radioactive Decay | | | Activity | | | Count Rate | | | Radiation | Symbol | Description | Range | Penetrating
Power | Ionising
Power | |-----------|--------|-------------|-------|----------------------|-------------------| | Alpha | | | | | | | Beta | | | | | | | Gamma | | | | | | #### Nuclear Equations | Type of Radiation | Description | Symbol To Use In Nuclear Equations | |-------------------|-------------|------------------------------------| | Alpha | | | | Beta | | | | Construct a nuclear eq | quation to model the alph | a decay of radon-219 | 9. | |------------------------|---------------------------|----------------------|----| Construct a nuclear equation to model the beta decay of carbon-14 | Compare alpha and beta decay. | | | | | |-------------------------------|--|--|--|--| Half Life | Key Term | Definition | |-------------------|------------| | Radioactive Decay | | | Half Life | | | Explain how to use a graph to determine half life. | |--| | | | | | | | | Sketch a graph to model a substance that has a half life of 1 day with a start activity of 100 Bq Radioactive Contamination | Key Term | Definition | |---------------------------|------------| | Radioactive Contamination | | | Irradiation | | | Explain the importance of peer review when studying the effects of radiation. | |---| | | | | | | Contamination | Irradiation | |---|---------------|-------------| | When It Occurs | | | | Does It Cause The Object To Become Radioactive? | | | | Stopping/Blocking
Radiation. | | | Background Radiation | Key Term | Definition | |---------------------------|--| | Background Radiation | | | Source of Radiation | Example(s) | | Natural Sources | | | Man-Made Sources | | | | | | Identify what radiation d | oes is measured in. | | Identify what radiation d | oes is measured in. | | | oes is measured in. between millisieverts and sieverts. | | | | Uses of Nuclear Radiation | Control or
Destruction of
Unwanted
Tissue | Exploration of
Internal
Organs | Use of
Nuclear
Radiation | |--|--------------------------------------|---------------------------------| | | | Description | | | | Properties of Radiation
Used | | | | Disadvantages | **Nuclear Fission** | Key Term | Definition | |-----------------|------------| | Nuclear Fission | | | Describe what happens during nuclear fission. | | | |---|--|--| Construct a diagram to model nuclear fission **Nuclear Fusion** | Key Term | Definition | |----------------|------------| | Nuclear Fusion | | Construct a diagram to model nuclear fusion